One-pot synthesis of NiAl–CO3 LDH anti-corrosion coatings from CO2-saturated precursors†
Abstract
Anti-corrosive coatings based on layered double hydroxides (LDHs) have been considered as promising alternatives to conventional chromate-containing conversion coatings. Among various LDHs, carbonate-intercalated LDH coatings with a c-axis preferred orientation should be the optimum structure for protecting metals against corrosion. Herein we successfully prepared NiAl–CO3 LDH coatings on aluminium plates in one step. Particularly it was found that CO2 dissolved in the precursor solution exerted great influence on the microstructure and anti-corrosion capacity of prepared LDH coatings. Trace amounts of CO2 in the precursor solution led to the formation of ab-oriented 7 μm-thick LDH coatings, while preferentially c-oriented LDH coatings with an average thickness of 12 μm were formed from CO2-saturated precursor solutions. A DC polarization test demonstrated that preferentially c-oriented LDH coatings exhibited much higher anti-corrosion performance than ab-oriented LDH coatings possibly due to the decreased density of mesoscopic defects. Simultaneously, CO2, the green gas, was also positively utilized.