Sulfur-doped porous carbon nanosheets as high performance electrocatalysts for PhotoFuelCells†
Abstract
Sulfur-doped porous carbon nanosheets have been prepared by pyrolysis of graphene-coupled conjugated microporous polymers under an inert atmosphere. The obtained carbon nanosheets exhibited large specific surface areas up to 642 m2 g−1 and high sulfur weight content up to 7.11%. These highly porous carbon nanosheets have been studied as metal-free oxygen reduction electrocatalysts in alkaline environments and they were found to undergo oxygen reduction via a major 4-electron transfer pathway. They were then examined as substitutes for Pt–carbon electrocatalysts in PhotoFuelCells functioning in the presence of ethanol as a model fuel. It has been shown that sulfur doped porous carbon nanosheets yield functional cells with approximately the same characteristics as those employing Pt–carbon electrocatalysts, therefore, they mark a new class of metal-free catalysts.