Binary Mg–Fe oxide as a highly active and magnetically separable catalyst for the synthesis of ethyl methyl carbonate
Abstract
Magnetic binary Mg–Fe oxides were prepared by a co-precipitation method, characterized and tested in the synthesis of ethyl methyl carbonate (EMC) from di methyl carbonate (DMC) and diethyl carbonate (DEC). The obtained results showed that the Mg/Fe oxide catalyst with a 1 : 1 molar ratio and calcined at 400 °C exhibited superior catalytic activity. The yield of EMC could reach 66% (at 100 °C for 1.5 h) with a TOF of 220 mmol h−1 gcat−1. The prepared catalysts could be magnetically separated, and reused for ten runs without noticeable deactivation. XRD and Mössbauer spectra revealed that there was a synergistic effect between Mg and Fe oxides in the catalysts, which was consistent with the results of TPR, i.e. the introduction of the Mg component favored the reduction of the Fe2O3. XPS and IR characterizations indicated that there were a large number of accessible Fe-OHs on the surface of MgFe-400, and combining the Fe-OHs with the basic MgO may be related to the highly catalytic performance.