Issue 37, 2015

Highly-ordered maghemite/reduced graphene oxide nanocomposites for high-performance photoelectrochemical water splitting

Abstract

Highly ordered γ-Fe2O3/reduced graphene oxide (RGO) was synthesized via a facile solution technique combined with calcination at various temperatures. The maghemite iron oxide structure was obtained on the GO surface and improved crystallinity of γ-Fe2O3 was observed as the calcination temperature increased. The prepared highly ordered maghemite structure on RGO exhibited an excellent water splitting performance under UV light (∼360 nm) illumination. The photocurrent density of RGO/γ-Fe2O3 calcined at 500 °C was 6.74 mA cm−2 vs. RHE and a high incident photon to current conversion efficiency (IPCE) of 4.7%, was achieved. This photocurrent density and the IPCE values are 3.7 times and 4 times higher than that of pristine iron oxide, respectively.

Graphical abstract: Highly-ordered maghemite/reduced graphene oxide nanocomposites for high-performance photoelectrochemical water splitting

Supplementary files

Article information

Article type
Paper
Submitted
15 Feb 2015
Accepted
19 Mar 2015
First published
19 Mar 2015

RSC Adv., 2015,5, 29159-29166

Author version available

Highly-ordered maghemite/reduced graphene oxide nanocomposites for high-performance photoelectrochemical water splitting

S. Chandrasekaran, S. H. Hur, E. J. Kim, B. Rajagopalan, K. F. Babu, V. Senthilkumar, J. S. Chung, W. M. Choi and Y. S. Kim, RSC Adv., 2015, 5, 29159 DOI: 10.1039/C5RA02934A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements