Issue 45, 2015

A novel architecture based on a conducting polymer and calixarene derivative: its synthesis and biosensor construction

Abstract

In this study, a novel amperometric glucose biosensor based on a selenium comprising conducting polymer and calixarene was developed. Firstly, poly(2-(2-octyldodecyl)-4,7-di(selenoph-2-yl)-2H-benzo[d][1,2,3]triazole), poly((SBTz)) was electrodeposited onto a graphite electrode by an electropolymerization technique. Then, a newly synthesized calixarene and gold nanoparticle (AuNP) mixture was used for the improvement of biosensor characteristics. GOx, as a model enzyme was immobilized on the modified electrode surface. The constructed surface serves as a sufficient immobilization platform for the detection of glucose. Calixarenes and their derivatives may be a favouring agent for enzyme immobilization due to their specific configurations. Moreover, through the covalent binding between the carboxylic groups of the calixarenes and amino groups of the biomolecule, effective enzyme immobilization can be achieved while protecting the well-ordered structure of the enzyme molecule. Amperometric detection was carried out following oxygen consumption at −0.7 V vs. the Ag reference electrode in phosphate buffer (50 mM, pH 6.5). The proposed biosensor showed a linear amperometric response for glucose within a concentration range of 0.005 to 0.5 mM (LOD: 0.004 mM). Kappm and sensitivity were calculated as 0.025 mM and 102 μA mM−1 cm−2, respectively. Scanning Electron Microscopy (SEM) was used to investigate the surface morphologies of successive modifications. Finally, the constructed biosensor was tested successfully to detect glucose in beverage samples.

Graphical abstract: A novel architecture based on a conducting polymer and calixarene derivative: its synthesis and biosensor construction

Article information

Article type
Paper
Submitted
05 Mar 2015
Accepted
13 Apr 2015
First published
14 Apr 2015

RSC Adv., 2015,5, 35940-35947

Author version available

A novel architecture based on a conducting polymer and calixarene derivative: its synthesis and biosensor construction

T. C. Gokoglan, S. Soylemez, M. Kesik, H. Unay, S. Sayin, H. B. Yildiz, A. Cirpan and L. Toppare, RSC Adv., 2015, 5, 35940 DOI: 10.1039/C5RA03933A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements