PDMS micropillar-based microchip for efficient cancer cell capture†
Abstract
We introduce a micropillar-based microfluidic device for efficient and rapid cancer cell capture. The microfluidic chip consists of two linear arrays of micropillars integrated with a herringbones flow-derived microstructure, and the separation distance between two adjacent micropillars is similar to the size of tumor cells. Cancer cells can be forced to come into contact with the micro-columns and are then captured by specific immune antibody–antigen interactions. Both previously published data and new available experimental data confirm the superiority of the proposed device. Different cancer cell lines were utilized to investigate the capture efficiency of our microfluidic device. MCF-7 cancer cells spiked into DMEM culture medium can be captured from a suspension with over 90% efficiency. The results of the present work provide a promising method for separation of rare cells, such as circulating tumor or fetal cells.