Issue 50, 2015

Amorphous calcium phosphate nanowires prepared using beta-glycerophosphate disodium salt as an organic phosphate source by a microwave-assisted hydrothermal method and adsorption of heavy metals in water treatment

Abstract

Amorphous calcium phosphate nanowires (ACPNWs) were prepared using calcium chloride as the calcium source and β-glycerophosphate disodium salt (BGP) as the phosphate source by a microwave-assisted hydrothermal method. The effects of the hydrothermal temperature and concentrations of BGP and CaCl2 on the morphology and crystalline phase of the product were investigated. The as-prepared products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The possible formation mechanism of the ACPNWs is proposed. The experimental results indicate that the as-prepared ACPNWs exhibit large adsorption capacities for heavy metal ions (Cd2+, Cu2+, Pb2+, and Zn2+) and a highly selective adsorption activity for Pb2+ ions in an aqueous solution in the pH range from 4.5 to 8.5, implying that ACPNWs are a promising adsorbent for applications in water treatment.

Graphical abstract: Amorphous calcium phosphate nanowires prepared using beta-glycerophosphate disodium salt as an organic phosphate source by a microwave-assisted hydrothermal method and adsorption of heavy metals in water treatment

Article information

Article type
Paper
Submitted
16 Mar 2015
Accepted
16 Apr 2015
First published
05 May 2015

RSC Adv., 2015,5, 40154-40162

Amorphous calcium phosphate nanowires prepared using beta-glycerophosphate disodium salt as an organic phosphate source by a microwave-assisted hydrothermal method and adsorption of heavy metals in water treatment

G. Ding, Y. Zhu, C. Qi, T. Sun, J. Wu and F. Chen, RSC Adv., 2015, 5, 40154 DOI: 10.1039/C5RA04624F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements