Issue 45, 2015

Non-linear viscoelastic properties of TATB-based polymer bonded explosives modified by a neutral polymeric bonding agent

Abstract

The neutral polymeric bonding agent (NPBA) was selected to enhance the interface adherence between 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) crystals and fluoropolymer. The interfacial performance of the composites was investigated by the measurement of contact angle and the interfacial bonding mechanism was studied by XPS analysis. The results indicate that a hydrogen bond between TATB and NPBA is formed. The mechanical analysis of the TATB-based polymer bonded explosives (PBXs) revealed that the storage modulus, the mechanical strength and the elongation at break of the formulation modified by NPBA were improved. The creep behaviors of the TATB-based PBXs with and without NPBA were also investigated at different temperatures and stresses. Reduced creep strain and steady-state creep strain rate and prolonged creep failure time were observed for the modified formulation, suggesting enhanced creep resistance performance. The creep experimental data were evaluated using a six-element mechanical model and the long-term creep performance of the materials was predicted using the time–temperature superposition principle. The creep behavior up to 6.0 years at 30 °C/4 MPa could be predicted by the short-term experimental data (5400 s) acquired at 30–80 °C under 4 MPa. The application of NPBA provides an efficient route to reinforce, toughen, and improve the creep resistance of explosive composites, such as TATB-based PBXs in this study.

Graphical abstract: Non-linear viscoelastic properties of TATB-based polymer bonded explosives modified by a neutral polymeric bonding agent

Article information

Article type
Paper
Submitted
01 Apr 2015
Accepted
09 Apr 2015
First published
09 Apr 2015

RSC Adv., 2015,5, 35811-35820

Author version available

Non-linear viscoelastic properties of TATB-based polymer bonded explosives modified by a neutral polymeric bonding agent

C. Lin, J. Liu, G. He, L. Chen, Z. Huang, F. Gong, Y. Liu and S. Liu, RSC Adv., 2015, 5, 35811 DOI: 10.1039/C5RA05824D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements