A series of multidimensional MOFs incorporating a new N-heterocyclic building block: 5,5′-di(pyridin-4-yl)-3,3′-bi(1,2,4-triazole)†
Abstract
By using a new N-heterocyclic building block, 5,5′-di(pyridin-4-yl)-3,3′-bi(1,2,4-triazole) (4,4′-H2dbpt), six novel coordination polymers with diversiform connectivity from one- to three-dimensional were successfully constructed. By regulating the different auxiliary ligands, central metal ions, and some other synthetic conditions, 4,4′-H2dbpt adopted various coordination modes. Consequently, 1 adopts a 2D (3,6)-topology, with the (43)3(46.66.83)2 Schläfli symbol. 2 shows a 3D 8-connected topology with a (36.418.53.6) Schläfli symbol. 3 and 4, which are isostructural, both have a 2D 4-connected topology, with a (44.62) Schläfli symbol. 5 has a complex 3D porous architecture with a 1D solvent-filled channel. 6 reveals a 1D helical chain extended along a 4-fold screw axis. These results indicate that 4,4′-H2dbpt is an excellent multi-connection linker from which we can construct MOFs with interesting structures and properties.