Issue 57, 2015

Highly flexible and transparent film heaters based on polyimide films embedded with silver nanowires

Abstract

Highly flexible and transparent film heaters (TFHs) with superior mechanical and thermal stability were fabricated by embedding silver nanowires (AgNWs) into transparent polyimide (PI) films using a solution coating method. The fabricated AgNW/PI hybrid TFHs exhibited higher heating temperatures (∼96 °C) with lower input voltage (∼6 V), shorter response time (T < 40 s), and lower power consumption (160.6 °C cm2 W−1) than ITO/FTO heaters, as well as stability after repeated use. The AgNW/PI hybrid TFHs also showed excellent resistance to bending. After undergoing outer bending for a 1000 times, the change of sheet resistance was less than 18%. The effective embedment of the AgNW network in the surface of the transparent PI film not only decreased the surface roughness (Rrms < 1 nm) but also enhanced the resistance against oxidation and moisture. Potential applications of the AgNW/PI TFHs in window defogging and thermochromics are demonstrated.

Graphical abstract: Highly flexible and transparent film heaters based on polyimide films embedded with silver nanowires

Supplementary files

Article information

Article type
Paper
Submitted
12 Apr 2015
Accepted
13 May 2015
First published
15 May 2015

RSC Adv., 2015,5, 45836-45842

Highly flexible and transparent film heaters based on polyimide films embedded with silver nanowires

Q. Huang, W. Shen, X. Fang, G. Chen, J. Guo, W. Xu, R. Tan and W. Song, RSC Adv., 2015, 5, 45836 DOI: 10.1039/C5RA06529A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements