Issue 69, 2015

Improved photo-luminescence behaviour of Eu3+ activated CaMoO4 nanoparticles via Zn2+ incorporation

Abstract

Zn2+ (0, 2, 5, 7 and 10 at%) co-doped CaMoO4:2Eu3+ nanophosphors have been synthesized via the polyol method using ethylene glycol (EG) as both capping agent and reaction medium at 150 °C. From XRD analysis, all 900 °C annealed Zn co-doped CaMoO4:Eu3+ nanophosphors have a tetragonal scheelite phase. Some extra phase evolution has been observed for the as-prepared Zn doped samples. The intensity and crystallinity of XRD patterns increase as heat treatment increases to 900 °C. The valence states of the involved compositions (Zn co-doped CaMoO4:Eu) were investigated by X-ray photoelectron spectroscopy (XPS) and it was found that Ca, Mo, Eu and Zn are in their +2, +6, +3 and +2 oxidation states, respectively. TG-DSC studies of the as-prepared samples corroborate their thermal stability. A TEM (Transmission electron microscopy) study reveals that the particles have spherical morphology. Photoluminescence studies have been carried out under ∼266, and 395 nm excitation wavelengths. Zn co-doping in the CaMoO4:Eu matrix produces a high distortion and modifies the crystal field around the Eu3+ ion and improves the PL intensity. CIE co-ordinates of the 900 °C annealed 10 at% Zn co-doped CaMoO4:Eu sample under 266 nm excitation is x = 0.64 and y = 0.35, which are close to the standard of NTSC (x = 0.67 and y = 0.33). These investigations reveal that Zn co-doped CaMoO4:Eu3+ nano-materials can be used as potential red emitting phosphors, an area which is a bottleneck in the development of low cost LEDs.

Graphical abstract: Improved photo-luminescence behaviour of Eu3+ activated CaMoO4 nanoparticles via Zn2+ incorporation

Supplementary files

Article information

Article type
Paper
Submitted
14 Apr 2015
Accepted
19 May 2015
First published
22 May 2015

RSC Adv., 2015,5, 55977-55985

Author version available

Improved photo-luminescence behaviour of Eu3+ activated CaMoO4 nanoparticles via Zn2+ incorporation

B. P. Singh, Maheshwary, P. V. Ramakrishna, S. Singh, V. K. Sonu, S. Singh, P. Singh, A. Bahadur, R. A. Singh and S. B. Rai, RSC Adv., 2015, 5, 55977 DOI: 10.1039/C5RA06692A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements