Issue 77, 2015

Phenylalanine ammonia-lyase, a key component used for phenylpropanoids production by metabolic engineering

Abstract

Phenylalanine ammonia-lyase (PAL, EC 4.3.1.24) catalyzes the deamination of phenylalanine to cinnamate and ammonia, the first step of the phenylpropanoid pathway. PALs are ubiquitous in plants and also commonly found in fungi, but have not yet been detected in animals. Typically, PAL is encoded by a small multigene family and the presence of PAL isoforms is a common observation. PAL belongs to the 3,5-dihydro-5-methylidene-4H-imidazol-4-one-containing ammonia-lyase family and has been shown to exist as a tetramer. Both the forward and reverse reactions catalyzed by PALs were of great interest and have potential industrial and medical applications. This review, therefore, covers the recent developments related to the PAL gene distribution, phenylalanine ammonia-lyase gene family, structure and function study of PALs, as well as several potential applications of PALs. As a key gateway enzyme linking the phenylpropanoid secondary pathway to primary metabolism, PALs were extensively applied in heterologous hosts to produce phenylpropanoids. The review thereby highlights the synthetic potentials of PALs as a key component used in metabolic engineering and synthetic biology. Moreover, the other potential PAL applications, like enzyme replacement therapy of phenylketonuria, as a therapeutic enzyme in cancer treatment and microbial production of L-phenylalanine are also discussed in detail. Together these results provide a synopsis of a more global view of potential applications of PALs than previously available.

Graphical abstract: Phenylalanine ammonia-lyase, a key component used for phenylpropanoids production by metabolic engineering

Article information

Article type
Review Article
Submitted
04 May 2015
Accepted
17 Jul 2015
First published
17 Jul 2015

RSC Adv., 2015,5, 62587-62603

Author version available

Phenylalanine ammonia-lyase, a key component used for phenylpropanoids production by metabolic engineering

J. Kong, RSC Adv., 2015, 5, 62587 DOI: 10.1039/C5RA08196C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements