Issue 79, 2015

Barberry fruit extract assisted in situ green synthesis of Cu nanoparticles supported on a reduced graphene oxide–Fe3O4 nanocomposite as a magnetically separable and reusable catalyst for the O-arylation of phenols with aryl halides under ligand-free conditions

Abstract

In situ synthesis of copper nanoparticles (NPs) supported on a reduced graphene oxide (RGO)–Fe3O4 nanocomposite was carried out with barberry fruit extract as a reducing and stabilizing agent. The morphology and structure of the Cu/RGO–Fe3O4 nanocomposite was fully characterized by means of X-ray diffraction (XRD), Fourier transformed infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), Raman, energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). Cu/RGO–Fe3O4 was a promising catalyst for the O-arylation of phenols with aryl halides under ligand-free conditions. A diverse range of diaryl ethers were obtained in a good to high yield. Furthermore, due to the magnetic separability and high stability of the composite the catalyst could be separated conveniently from the reaction mixtures by an external permanent magnet and recycled multiple times without loss of catalytic activity.

Graphical abstract: Barberry fruit extract assisted in situ green synthesis of Cu nanoparticles supported on a reduced graphene oxide–Fe3O4 nanocomposite as a magnetically separable and reusable catalyst for the O-arylation of phenols with aryl halides under ligand-free conditions

Article information

Article type
Paper
Submitted
27 May 2015
Accepted
23 Jul 2015
First published
23 Jul 2015

RSC Adv., 2015,5, 64769-64780

Barberry fruit extract assisted in situ green synthesis of Cu nanoparticles supported on a reduced graphene oxide–Fe3O4 nanocomposite as a magnetically separable and reusable catalyst for the O-arylation of phenols with aryl halides under ligand-free conditions

M. Nasrollahzadeh, M. Maham, A. Rostami-Vartooni, M. Bagherzadeh and S. M. Sajadi, RSC Adv., 2015, 5, 64769 DOI: 10.1039/C5RA10037B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements