N-rich porous organic polymer with suitable donor–donor–acceptor functionality for the sensing of nucleic acid bases and CO2 storage application
Abstract
A new high surface area porous organic polymer PDVTD-1 (poly-divinylbenzene-co-tartardiamide) has been synthesized via radical copolymerization of divinylbenzene and (+)-N,N′-diallyltartardiamide using AIBN initiator under solvothermal conditions. A detailed characterization of this functionalized porous polymer is performed using N2 sorption, solid state 13C CP MAS NMR, FT-IR and UV-Vis spectroscopy, HR-TEM, FE-SEM, TGA/DTA and CHN analysis. Photoluminescence study of the material is carried out to investigate the sensing behaviour of PDVTD-1 towards different nucleic acid bases. It is observed that at very low concentration of base (i.e. 10−6 to 10−7 M) PDVTD-1 can selectively sense cytosine, whereas in the concentration range 10−3 to 10−5 M adenine, thymine and uracil also shows quenching of its fluorescence intensity. Moreover, this N-rich porous polymer PDVTD-1 showed excellent CO2 uptake capacity of 8.76 mmol g−1 (38.54 wt%) at 273 K and 3 bar pressure with an initial isosteric heat of adsorption (Qst) of 72 kJ mol−1.