Issue 81, 2015

Temperature effects on a motion transmission device made from carbon nanotubes: a molecular dynamics study

Abstract

A motion transmission system made from coaxial carbon nanotubes (CNTs) is introduced. In the system, the motor is built from a single-walled carbon nanotube (SWCNT) and the converter is made from triple-walled carbon nanotubes (TWCNTs). The outer shell acts as a stator with two fixed tube ends. The inner tube (rotor 1) and the middle tube (rotor 2) can move freely in the stator. When the axial gaps between the motor and the TWCNTs are small enough and the motor has a relatively high rotational speed, the two rotors have either stable rotation or oscillation, which can be considered as output signals. To investigate the effects of such factors as the length of rotor 2, the rotational speed of the motor, and the environmental temperature on the dynamic response of the two rotors, numerical simulations using molecular dynamics (MD) are presented on a device model having a (5, 5) motor and a (5, 5)/(10, 10)/(1, 15) converter. Numerical results show that the two inner tubes can act as both rotor(s) and oscillator, simultaneously if the middle tube is longer than the inner tube. In particular, we find a new phenomenon, mode conversion of the rotation of rotor 1 by changing the environmental temperature. Briefly, rotor 1 rotates synchronously with the high-speed motor at a higher temperature or with rotor 2 at a lower temperature. The effect of radii difference among the three tubes in the bearing are also discussed by replacing the middle tube (10, 10) with different zigzag tubes.

Graphical abstract: Temperature effects on a motion transmission device made from carbon nanotubes: a molecular dynamics study

Supplementary files

Article information

Article type
Paper
Submitted
03 Jun 2015
Accepted
29 Jul 2015
First published
30 Jul 2015

RSC Adv., 2015,5, 66438-66450

Author version available

Temperature effects on a motion transmission device made from carbon nanotubes: a molecular dynamics study

K. Cai, X. Zhang, J. Shi and Q. Qin, RSC Adv., 2015, 5, 66438 DOI: 10.1039/C5RA10470J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements