Enhancement of sinterability and mechanical properties of B4C ceramics using Ti3AlC2 as a sintering aid
Abstract
Boron carbide (B4C) ceramics are currently the leading control rod materials in fast nuclear reactors and promising high temperature structural materials. However, several drawbacks such as poor sinterability and low toughness seriously limit their wide applications. In order to enhance the sinterability and mechanical properties of B4C ceramics, titanium aluminum carbide (Ti3AlC2) was chosen as a new efficient sintering aid to densify B4C ceramics using spark plasma sintering. Fully dense B4C ceramics were obtained at a lower sintering temperature of 1500 °C by adding a small amount of Ti3AlC2. Meanwhile, the mechanical properties were enhanced remarkably. For B4C ceramics sintered with 15 vol% Ti3AlC2, optimized mechanical properties were obtained with Vickers hardness of 40.2 GPa and indentation fracture toughness of 4.7 MPa m1/2. These results indicate that Ti3AlC2 can be used as a novel sintering aid for the densification of B4C ceramics.