Low loaded palladium nanoparticles on ethylenediamine-functionalized cellulose as an efficient catalyst for electrochemical hydrogen production
Abstract
In this study, for the first time, a carbon paste electrode (CPE) was modified with palladium nanoparticles supported on ethylenediamine-functionalized cellulose (PdNPs@EDAC-CPE), and its performance for electrocatalytic hydrogen production was examined. Field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectroscopy (EDX) were used to study the morphology and structure of PdNPs@EDAC, respectively. Electrochemical characterizations were performed using cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). To optimize conditions, the influence of some parameters including the amounts of PdNPs@EDAC and binder in the electrode composition and the electrolyte type and its pH were examined on the hydrogen production process. Comparison of the proposed electrode with the CPE, CPE modified with functionalized cellulose (EDAC-CPE) and CPE modified with Pd (Pd-CPE) showed that PdNPs@EDAC-CPE has the best performance. The proposed electrode with the very low loaded Pd includes several advantages such as using cellulose as a biodegradable polymer, low cost, very good performance and ease of preparation on a large scale that could be a perfect candidate for high-purity electrocatalytic hydrogen production.