Novel highly aligned, double-layered, hollow fibrous polycarbonate membranes with a perfectly tightly packed pentagonal pore structure fabricated using the electrospinning process
Abstract
Highly aligned, tightly packed, single-, double-, and mixed-layer polycarbonate (PC) hollow fibrous membranes were prepared using two-fluid coaxial electrospinning. Polyethylene oxide (PEO) was used as the core, and PC was used as the shell; the PEO was subsequently extracted. The effects of the polymer concentration and spinning voltage on the morphologies and mechanical properties of the membranes were explored. At a PC concentration of 20 wt% and voltage of 8 kV, a hollow fibrous membrane (PC20-8) with a perfectly packed double-layered structure, high alignment of 97%, and distinct pentagonal pores (different from the typical quadrangle pore structure) was prepared. This membrane had the highest Young's modulus and tensile strain, 1.8 GPa and 700%, respectively. The observed results suggest that highly aligned hollow fibrous membranes with favorable mechanical properties, particularly PC20-8, have potential for application in guide conduits for nerves, vascular scaffolds, and biomedical devices.