Issue 114, 2015

Effect of silica precursor transformation on diclofenac sodium release

Abstract

The present paper describes the preparation of a new type of ternary composite where pure silica gel or polysilsesquioxane was deposited on a polymer carrier loaded with a high dose of diclofenac sodium. The silica species were prepared by in situ gelation of the precursors, tetraethoxysilane (TEOS) or ethyltriethoxysilane (ETEOS), in the presence of an acidic catalyst in the vapour phase. The conducted studies (low temperature nitrogen sorption, XRD, SEM, EDX) reveal that the introduction of drug molecules, as well as silica species, significantly changes the internal structure of the host material. The total porosity of the ternary composites strongly depends on the type of applied silica precursor. Additionally, it is shown that the exposure of the TEOS-saturated or ETEOS-saturated solid dispersion of drug within the polymer to acid vapors is sufficient to cause the irreversible transformation of diclofenac sodium into sodium chloride and a derivative of phenylacetic acid. Furthermore, TEOS prevents the transformation of the drug into its acidic form more effectively than the ETEOS precursor. Finally, the in vitro release of the drug is demonstrated, which clearly indicates that after the embedding both of the silica species, the rate of drug release is modified and the degree of initial drug delivery is successfully diminished. The obtained data are analyzed using different kinetics models to give insight into the possibility of prolonged release of a drug and the probable mechanism of drug release from the investigated samples.

Graphical abstract: Effect of silica precursor transformation on diclofenac sodium release

Supplementary files

Article information

Article type
Paper
Submitted
29 Jul 2015
Accepted
16 Oct 2015
First published
16 Oct 2015

RSC Adv., 2015,5, 94067-94076

Effect of silica precursor transformation on diclofenac sodium release

A. Kierys, R. Kasperek, P. Krasucka, Ł. Zimmer, E. Poleszak and J. Goworek, RSC Adv., 2015, 5, 94067 DOI: 10.1039/C5RA15064G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements