Issue 105, 2015

Eco-friendly water-induced aluminum oxide dielectrics and their application in a hybrid metal oxide/polymer TFT

Abstract

Solution-processed oxide semiconductors have been widely studied with the objective of achieving high-performance, sustainable and low-cost electronic devices. In this report a simple and eco-friendly water-inducement method has been developed to fabricate high-k dielectrics and hybrid thin-film transistors (TFTs); introducing metal nitrates and deionized water as the precursor materials. The AlOx dielectric films annealed at temperatures higher than 350 °C result in low leakage current densities and the dielectric constants are nearly 7. Instead of the conventional oxide semiconductors, water-induced (WI) polyvinylprrolidone (PVP) was introduced into the In2O3 solution to form a hybrid metal oxide/polymer channel layer. The 250 °C-annealed WI In2O3 : PVP TFTs based on AlOx dielectric exhibit outstanding electrical performances and high stability. These promising properties were obtained at an ultra-low operating voltage of 2 V. The WI metal oxide/polymer hybrid TFTs are promising alternatives for applications in low-cost, low-consumption and eco-friendly flexible electronics.

Graphical abstract: Eco-friendly water-induced aluminum oxide dielectrics and their application in a hybrid metal oxide/polymer TFT

Supplementary files

Article information

Article type
Paper
Submitted
02 Aug 2015
Accepted
06 Oct 2015
First published
07 Oct 2015

RSC Adv., 2015,5, 86606-86613

Author version available

Eco-friendly water-induced aluminum oxide dielectrics and their application in a hybrid metal oxide/polymer TFT

A. Liu, G. Liu, H. Zhu, B. Shin, E. Fortunato, R. Martins and F. Shan, RSC Adv., 2015, 5, 86606 DOI: 10.1039/C5RA15370K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements