Structure and electrical properties of tetragonal tungsten bronze Ba2CeFeNb4O15†
Abstract
The crystal structure and electrical microstructure of a tetragonal tungsten bronze (TTB) ceramic, BaCeFeNb4O15 (BCFN), were investigated by high-resolution synchrotron X-ray powder diffraction (SPD), selected area electron diffraction (SAED), and AC impedance spectroscopy. SPD and SAED reveal that the BCFN has a tetragonal structure with space group P4/mbm, and includes an incommensurate modulated behavior. Impedance and AC conductivity tests in the range of 200–360 °C suggest thermally activated electrical behavior which originates from both the bulk and the grain boundary elements of the ceramics. The dielectric relaxation in the grain boundaries is due to the trap-controlled ac conduction around doubly ionized oxygen vacancies while the relaxation of the bulk may be associated with the localized electron hopping between the transition-metal ions. These results could be helpful in understanding the electrical conduction and relaxation processes in Fe-containing TTB-type oxides.