Issue 123, 2015

Probing the compatibility of energetic binder poly-glycidyl nitrate with energetic plasticizers: thermal, rheological and DFT studies

Abstract

The essential idea of developing energetic binders and plasticizers is to enhance the thermal stability and energy content, improve the oxygen balance and burning behaviour of moulds, reduce the glass transition temperature and improve other mechanical properties of propellant and explosives formulations. The compatibility of energetic binder poly-glycidyl nitrate (PGN) with some energetic plasticizers of solid propellants was studied using differential scanning calorimetry (DSC), rheology and DFT methods in relation to the effect of the addition of five different energetic plasticizers, i.e. bis(2,2-dinitro propyl) acetal (BDNPA), dinitro-diaza-alkanes (DNDA-57), 1,2,4-butanetriol trinitrate (BTTN), N-N-butyl-N′(2-nitroxy-ethyl) nitramine (BuNENA) and diethyleneglycol dinitrate (DEGDN), on the rheological and thermal properties of the energetic binder PGN. The results obtained for the mixture of plasticizer and binder with respect to decomposition temperature (Tmax) and the format of the peak are compared with the results obtained for the pure binder, indicating the compatibility of these plasticizers with PGN. The glass transition temperatures (Tg) of all these mixes were determined by low-temperature DSC, which showed a lowering of Tg with a single peak. Rheological evaluation revealed that the viscosity of the binder is sufficiently lowered with an increase in flow behaviour on addition of 20% (w/w) plasticizer. The addition of 20% DEGDN has the maximum effect on the lowering of the viscosity of PGN. Quantum chemically derived molecular electrostatic potential (MESP) shows the possible sites of interaction of plasticizers and binder with the estimated lowest Vmin values and their magnitudes provide an insight into their mutual interactions. The relative trend in interaction energies between plasticizer and binder, PGN, is well correlated with a corresponding trend in the ability of plasticizers towards reducing the viscosity of PGN. The information gathered in the present study would in general be valuable with respect to designing new plasticizers.

Graphical abstract: Probing the compatibility of energetic binder poly-glycidyl nitrate with energetic plasticizers: thermal, rheological and DFT studies

Supplementary files

Article information

Article type
Paper
Submitted
15 Aug 2015
Accepted
09 Nov 2015
First published
11 Nov 2015

RSC Adv., 2015,5, 101297-101308

Author version available

Probing the compatibility of energetic binder poly-glycidyl nitrate with energetic plasticizers: thermal, rheological and DFT studies

S. K. Shee, S. T. Reddy, J. Athar, A. K. Sikder, M. B. Talawar, S. Banerjee and M. A. Shafeeuulla Khan, RSC Adv., 2015, 5, 101297 DOI: 10.1039/C5RA16476A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements