Fabrication of ZnIn2S4–g-C3N4 sheet-on-sheet nanocomposites for efficient visible-light photocatalytic H2-evolution and degradation of organic pollutants
Abstract
ZnIn2S4–g-C3N4 sheet-on-sheet nanocomposites with different g-C3N4 contents were synthesized by a facile hydrothermal method and characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), high-resolution transmission electron microcopy (HRTEM), N2 adsorption–desorption, ultraviolet-visible diffuse reflection spectroscopy (DRS), photoluminescence (PL) spectroscopy and photoelectrochemical (PEC) experiments. The photocatalytic activities of these samples were evaluated by the photocatalytic H2-production and degradation of organic pollutants (methyl orange and phenol) under visible-light illumination (λ > 420 nm). The results showed that the ZnIn2S4–g-C3N4 composite photocatalysts displayed higher photocatalytic activity than the pristine g-C3N4 and ZnIn2S4 both for H2-evolution and degradation of pollutants. The optimal g-C3N4 content was determined to be 40 wt%, and the corresponding H2-production rate was 953.5 μmol h−1 g−1, which was about 1.91 times higher than that of pure ZnIn2S4. The enhanced photocatalytic activity of ZnIn2S4–g-C3N4 composites should be attributed to the well-matched band structure and intimate contact interfaces between ZnIn2S4 and g-C3N4, which led to the effective transfer and separation of the photogenerated charge carriers. Moreover, the ZnIn2S4–g-C3N4 composites showed excellent stability during the photocatalytic reactions under visible light. A possible mechanism of the enhanced photocatalytic activity of ZnIn2S4–g-C3N4 composites was proposed and supported by the PL and PEC results.