Issue 122, 2015

A novel yet simple strategy to fabricate visible light responsive C,N-TiO2/g-C3N4 heterostructures with significantly enhanced photocatalytic hydrogen generation

Abstract

In this report, we first successfully designed and fabricated novel C,N co-doped titanium dioxide nanoparticles/graphite-like carbon nitrogen ultrathin nanosheets (C,N-TiO2 NPs/g-C3N4) heterostructures, wherein the C,N-TiO2 NPs were in situ grown on the porous g-C3N4 ultrathin nanosheets (NSs) by a simple one-pot solvothermal route with the assistance of concentrated nitric acid. The resulting C,N-TiO2 NPs/g-C3N4 nanocomposite photocatalysts were systematically characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy, transient photocurrent–time (It) curves and electrochemical impedance spectroscopy (EIS) Nyquist plots. The photocatalytic ability was evaluated by photocatalytic water splitting for hydrogen evolution. These studies indicate that C,N-TiO2 NPs/g-C3N4 composites exhibit superior ability for hydrogen generation compared to single C,N-TiO2 NPs and pure g-C3N4 NSs under visible light illumination. The optimal composites with 3 wt% C,N-TiO2 NPs/g-C3N4 showed the highest hydrogen evolution rate of 39.18 μmol g−1 h−1, which is about 10.9 and 21.3 times higher than those of C,N-TiO2 NPs and pure g-C3N4 NSs, respectively. The improved photocatalytic H2 evolution can be attributed to improved optical absorption and the lengthening lifetime of charge carrier pairs as a result of the C,N elemental codoping and the construction of intimate heterogeneous interfaces. This simple and feasible method for the fabrication of highly-efficient visible light responsive catalysts provides a great applied potential in energy generation.

Graphical abstract: A novel yet simple strategy to fabricate visible light responsive C,N-TiO2/g-C3N4 heterostructures with significantly enhanced photocatalytic hydrogen generation

Supplementary files

Article information

Article type
Paper
Submitted
08 Sep 2015
Accepted
09 Nov 2015
First published
11 Nov 2015

RSC Adv., 2015,5, 101214-101220

Author version available

A novel yet simple strategy to fabricate visible light responsive C,N-TiO2/g-C3N4 heterostructures with significantly enhanced photocatalytic hydrogen generation

W. Chen, T. Liu, T. Huang, X. Liu, G. Duan, X. Yang and S. Chen, RSC Adv., 2015, 5, 101214 DOI: 10.1039/C5RA18302B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements