Synthesis of mesoporous MCM-41 supported reduced graphene oxide-Fe catalyst for heterogeneous Fenton degradation of phenol
Abstract
A new heterogeneous Fenton catalyst, mesoporous MCM-41 supported reduced graphene oxide-Fe (rGO-Fe/MCM-41), was synthesized via a hybrid hydrothermal-calcination treatment. The physicochemical characteristics of the catalyst were evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (FT-IR) and surface area (BET) analysis. The results indicated that the rGO-Fe/MCM-41 possessed a mesoporous structure. The effective reduction of GO to rGO and a high degree of α-Fe2O3 loading were observed. After the incorporation of rGO, the activity and stability of the catalyst in phenol degradation significantly increased. The kinetics of phenol degradation fit the first order kinetic model well. The effects of Fe and GO dosage, as well as calcination temperature, were investigated. The XRD and the Raman scattering demonstrated that the reduction of GO was more effective, and the α-Fe2O3 crystal structure was formed when calcination temperature is 550 °C, which beneficially increased the catalytic activity.