Constructing nanosized CdTe nanocrystal clusters with thermo-responsive photoluminescence characteristics†
Abstract
Assembling ultra-small nanoparticles into nanosized colloidal nanocrystal clusters (CNCs) to create novel collective properties still poses tremendous challenges. This work reports the fabrication of photoluminescent CdTe CNCs on the nanoscale and their thermo-responsive properties. Diblock copolymers of poly(N-(2-aminoethyl) acrylamide-b-N-isopropylacrylamide) (PNAEAM-b-PNIPAM) were synthesized and employed as self-assembling actuators of CNCs. The side chains of PNAEAM blocks act as efficient anchors to capture CdTe nanocrystals via surface ligand identification. The thermo-sensitive PNIPAM blocks serve as the protection layer of CNCs and the trigger to turn off/on the photoluminescence CNCs during heating/cooling cycles. The [HS–C10mim]+ ligands with smart noncovalent interactions on the as-prepared nanocrystals render the CNCs rapid and reversible thermo-response performances. These make the CNCs an excellent thermo-responser, and offer a new controllable self-assembly route for designing and engineering multifunctional nanosized CNCs.