Issue 125, 2015

Core/shell-structured, covalently bonded TiO2/poly(3,4-ethylenedioxythiophene) dispersions and their electrorheological response: the effect of anisotropy

Abstract

As a new electrorheological (ER) material, core/shell nanorods composed of a titania core and conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) shell were prepared via covalent bonding to achieve a thin polymer shell and make the interfacial interactions between the two components more impressive. The successful coating of PEDOT on the nanorod-TiO2 particles was confirmed by TEM analysis. The antisedimentation stability of the core/shell nanorod-TiO2/PEDOT particles was determined to be 100%. The ER properties of the materials were studied under controlled shear, oscillatory shear and creep tests. The dielectric spectra of the dispersions were obtained to further understand their ER responses and fitted with the Cole–Cole equation. The ER behavior of the dispersions was also observed using an optical microscope. The flow curves of these ER fluids were determined under various electric field strengths and their flow characteristics examined via a rheological equation using the Cho–Choi–Jhon (CCJ) model. In addition, the results were also compared with nanoparticle-TiO2/PEDOT. It was concluded that the conducting thin polymer shell and elongated structure of the hybrid material introduced a synergistic effect on the electric field induced polarizability and colloidal stability against sedimentation, which resulted in stronger ER activity, storage modulus and higher recovery after stress loadings when compared to nanoparticle-TiO2/PEDOT.

Graphical abstract: Core/shell-structured, covalently bonded TiO2/poly(3,4-ethylenedioxythiophene) dispersions and their electrorheological response: the effect of anisotropy

Supplementary files

Article information

Article type
Paper
Submitted
30 Sep 2015
Accepted
17 Nov 2015
First published
18 Nov 2015

RSC Adv., 2015,5, 103159-103171

Author version available

Core/shell-structured, covalently bonded TiO2/poly(3,4-ethylenedioxythiophene) dispersions and their electrorheological response: the effect of anisotropy

O. Erol and H. I. Unal, RSC Adv., 2015, 5, 103159 DOI: 10.1039/C5RA20284A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements