Facile preparation of an Ag/AgVO3/BiOCl composite and its enhanced photocatalytic behavior for methylene blue degradation†
Abstract
BiOCl and AgVO3 have aroused great interest as photocatalysts in environmental remediation. They could be combined to improve their photocatalytic activity. A novel Ag/AgVO3/BiOCl composite photocatalyst was produced via a facile ultrasound assisted hydrothermal method. The as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (UV-DRS), photoluminescence (PL) emission spectroscopy and Brunauer Emmett Teller (BET) specific surface area analysis. It is revealed that the Ag/AgVO3/BiOCl composite was successfully synthesized with a large specific surface area, mesoporous structure, enhanced light absorption performance and good recyclability. The photocatalytic activity for methylene blue (MB) degradation was investigated under visible light irradiation. The Ag/AgVO3/BiOCl composite photocatalyst exhibited superior photocatalytic activity, and about 93.16% of MB was removed within 60 minutes of irradiation, which was better than that of pure BiOCl (29.24%) and Ag/AgVO3 (37.52%). The enhanced photocatalytic activity could be attributed to the effective visible light absorption and separation of electrons and holes. Therefore, it is reasonable to believe that the Ag/AgVO3/BiOCl composite photocatalyst has great potential in environmental remediation.