Issue 123, 2015

Synthesis, crystal structure and magnetic properties of the complex [ReCl3(tppz)]·MeCN

Abstract

The reaction of the starting materials [ReIIICl3(MeCN)(PPh3)2] or [ReVOCl3(PPh3)2] with 2,3,5,6-tetrakis(2-pyridyl)pyrazine (tppz) in acetonitrile yielded the Re(III) complex [ReCl3(tppz)]·MeCN (1). This complex crystallizes in the monoclinic space group P21/n and its crystal structure consists of neutral mononuclear entities with meridional geometry of the chloride ligands, and the six-coordination of the Re(III) ion being completed by the tridentate tppz ligand. Each metal centre exhibits a highly distorted octahedral coordination with Re–Cl and Re–Ntppz bond lengths covering the ranges 2.3590(9)–2.3606(8) and 1.971(2)–2.096(2) Å, respectively. The magnetic properties of 1 have been investigated in the temperature range 1.9–290 K. They are characteristic of a six-coordinate Re(III) mononuclear complex with d4 low-spin (3T1 ground state). The magnetic data of 1 are discussed through a deep analysis of the influence of the ligand-field, spin–orbit coupling, tetragonal distortion and covalency effects. The second-order Zeeman effect between the non-magnetic ground state (MJ = 0) and higher energy levels (MJ ≠ 0) determines the magnetic susceptibility of 1, the value of the temperature-independent paramagnetic susceptibility being 3378 × 10−6 cm3 mol−1. This value compares well with those reported for other structurally characterized Re(III) complexes.

Graphical abstract: Synthesis, crystal structure and magnetic properties of the complex [ReCl3(tppz)]·MeCN

Supplementary files

Article information

Article type
Paper
Submitted
16 Oct 2015
Accepted
17 Nov 2015
First published
18 Nov 2015

RSC Adv., 2015,5, 101616-101622

Author version available

Synthesis, crystal structure and magnetic properties of the complex [ReCl3(tppz)]·MeCN

J. Palion-Gazda, I. Gryca, B. Machura, F. Lloret and M. Julve, RSC Adv., 2015, 5, 101616 DOI: 10.1039/C5RA21466A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements