Mesoporous carbon nitride as a basic catalyst in dehydrochlorination of 1,1,2-trichloroethane into 1,1-dichloroethene
Abstract
1,1-Dichloroethene has many applications in industrial production and it holds great promise in developing a vapor phase catalytic dehydrochlorination process. We synthesized a carbon nitride material by dissolving dicyandiamide in N,N-dimethylformamide (DMF) as a precursor and using SBA-15 as a template. A carbon nitride material with a mesoporous structure and textured pores has been obtained and then characterized by N2-adsorption measurements, XRD, HRTEM, EDS and FT-IR. A mesoporous carbon nitride material with a surface area of 350 m2 g−1 and pore volume of 0.72 cm3 g−1 was fabricated, which also possessed triazine N heterocycles with extra amino groups. It is an outstanding heterogeneous base catalyst in the selective catalytic dehydrochlorination of 1,1,2-trichloroethane into 1,1-dichloroethene reaction with a maximum 1,1,2-trichloroethane conversion of 23.96% and maximum 1,1-dichloroethene selectivity of 100%. A total of 110 h stability experiment of the catalyst was provided and the selectivity stayed above 99% all through the experiment and the conversion remained no less than 15% for 35 h.