Issue 2, 2015

Suzuki–Miyaura coupling of arylboronic acids to gold(iii)

Abstract

Gold(III) is prominent in catalysis, but its organometallic chemistry continues to be restricted by synthesis. Metal–carbon bond formation often relies on organometallic complexes of electropositive elements, including lithium and magnesium. The redox potential of gold(III) interferes with reactions of these classic reagents. Resort to toxic metals is common, including reagents based on mercury and thallium. We report that the palladium-catalyzed Suzuki–Miyaura coupling of arylboronic acids extends to cyclometalated gold(III) chlorides. Both monoarylation and diarylation are achieved. We propose a mechanism where oxidative addition to palladium with rearrangement at gold(III) fixes the stereochemistry of monoarylated intermediates. Singly arylated species form as thermodynamic isomers. These entities then go on to form diarylated complexes. Reactions proceed at room temperature, and the products are stable to air, moisture, and chromatography.

Graphical abstract: Suzuki–Miyaura coupling of arylboronic acids to gold(iii)

Supplementary files

Article information

Article type
Edge Article
Submitted
18 Jul 2014
Accepted
27 Oct 2014
First published
06 Nov 2014
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2015,6, 981-986

Suzuki–Miyaura coupling of arylboronic acids to gold(III)

A. Maity, A. N. Sulicz, N. Deligonul, M. Zeller, A. D. Hunter and T. G. Gray, Chem. Sci., 2015, 6, 981 DOI: 10.1039/C4SC02148G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements