Stable porphyrin Zr and Hf metal–organic frameworks featuring 2.5 nm cages: high surface areas, SCSC transformations and catalyses†
Abstract
Two isostructural porphyrin Zr and Hf metal–organic frameworks (FJI-H6 and FJI-H7) are rationally synthesized, and are constructed from 2.5 nm cubic cages. Notably, they both possess high water and chemical stability and can undergo single-crystal to single-crystal transformations to embed Cu2+ ions into the open porphyrin rings. FJI-H6 has a high BET surface area of 5033 m2 g−1. Additionally, they exhibit promising catalytic abilities to convert CO2 and epoxides into cyclic carbonates at ambient conditions.