Spying on the boron–boron triple bond using spin–spin coupling measured from 11B solid-state NMR spectroscopy†
Abstract
There is currently tremendous interest in the previously documented example of a stable species exhibiting a boron–boron triple bond (Science, 2012, 336, 1420). Notably, it has recently been stated using arguments based on force constants that this diboryne may not, in reality, feature a boron–boron triple bond. Here, we use advanced solid-state NMR and computational methodology in order to directly probe the orbitals involved in multiple boron–boron bonds experimentally via analysis of 11B–11B spin–spin (J) coupling constants. Computationally, the mechanism responsible for the boron–boron spin–spin coupling in these species is found to be analogous to that for the case of multiply-bonded carbon atoms. The trend in reduced J coupling constants for diborenes and a diboryne, measured experimentally, is in agreement with that known for alkenes and alkynes. This experimental probe of the electronic structure of the boron–boron multiple bond provides strong evidence supporting the originally proposed nature of the bonds in the diboryne and diborenes, and demonstrates that the orbitals involved in boron–boron bonding are equivalent to those well known to construct the multiple bonds between other second-row elements such as carbon and nitrogen.