Issue 6, 2015

Edge overgrowth of spiral bimetallic hydroxides ultrathin-nanosheets for water oxidation

Abstract

The structure of edges may dramatically influence the properties of nanomaterials, so the rational design or control over the structures of the edges is required. Here we synthesized spiral ultrathin-nanosheets with overgrown edges (SUNOE) of NiFe, CoNi and CoFe bimetallic hydroxides by governing the growth rates of different directions in screw dislocation driven growth (SDDG) in nonaqueous solvents. The driving force for the SDDG is supersaturation, which could be controlled by the concentration of the different precursors, thus achieving non-uniform structures of the edges and inner sheets. NiFe, CoNi and CoFe bimetallic hydroxides possess layered structures, in which overgrown edges may prevent them from re-stacking. The as prepared SUNOE all show good performance for the oxygen evolution reaction (OER) in the electrolysis of water, and the lowest onset potential was 1.45 V (vs. RHE) (the lowest potential when the current density reached 10 mA cm−2 was 1.51 V (vs. RHE)).

Graphical abstract: Edge overgrowth of spiral bimetallic hydroxides ultrathin-nanosheets for water oxidation

Supplementary files

Article information

Article type
Edge Article
Submitted
07 Mar 2015
Accepted
02 Apr 2015
First published
02 Apr 2015
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2015,6, 3572-3576

Author version available

Edge overgrowth of spiral bimetallic hydroxides ultrathin-nanosheets for water oxidation

B. Ni and X. Wang, Chem. Sci., 2015, 6, 3572 DOI: 10.1039/C5SC00836K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements