Experimental demonstration of pH-dependent electrostatic catalysis of radical reactions†
Abstract
Time-dependent fluorescence spectroscopy has been used to demonstrate significant pH-dependent electrostatic effects on the kinetics and thermodynamics of hydrogen atom transfer between 1-hydroxy-2,2,6,6-tetramethyl-4-piperidinecarboxylic acid (4-CT-H) and the profluorescent nitroxide {2,2,6,6-tetramethyl-4-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-1-piperidinyl}oxidanyl radical (PFN) in dichloromethane. This pH switching does not occur when 4-CT-H is replaced with a structurally analogous hydroxylamine that lacks an acid-base group, or when the polarity of the solvent is increased. These findings validate our recent theoretical predictions that electrostatic stabilisation of delocalised radicals is of functional significance in low polarity environments.