Issue 10, 2015

Exceptional time response, stability and selectivity in doubly-activated phenyl selenium-based glutathione-selective platform

Abstract

A phenyl-selenium-substituted coumarin probe was synthesized for the purpose of achieving highly selective and extremely rapid detection of glutathione (GSH) over cysteine (Cys)/homocysteine (Hcy) without background fluorescence. The fluorescence intensity of the probe with GSH shows a ∼100-fold fluorescent enhancement compared with the signal generated for other closely related amino acids, including Cys and Hcy. Importantly, the substitution reaction with the sulfhydryl group of GSH at the 4-position of the probe, which is doubly-activated by two carbonyl groups, occurs extremely fast, showing subsecond maximum fluorescence intensity attainment; equilibrium was reached within 100 ms (UV-vis). The probe selectivity for GSH was confirmed in Hep3B cells by confocal microscopy imaging.

Graphical abstract: Exceptional time response, stability and selectivity in doubly-activated phenyl selenium-based glutathione-selective platform

Supplementary files

Article information

Article type
Edge Article
Submitted
10 Jun 2015
Accepted
09 Jul 2015
First published
09 Jul 2015
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2015,6, 5435-5439

Exceptional time response, stability and selectivity in doubly-activated phenyl selenium-based glutathione-selective platform

Y. Kim, S. V. Mulay, M. Choi, S. B. Yu, S. Jon and D. G. Churchill, Chem. Sci., 2015, 6, 5435 DOI: 10.1039/C5SC02090E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements