Issue 8, 2015

Classifying dynamic contact line modes in drying drops

Abstract

Although the evaporation mode of sessile droplets is almost universally characterized as either constant contact radius (CCR) or constant contact angle (CCA), here we investigate two alternatives where the contact line speed is either constant or inversely proportional to the droplet radius. We present supporting evidence from our experiments on poly(ethylene oxide) (PEO) polymer solutions and blood, and from literature on pure and binary liquids, colloidal suspensions, soft substrates, reactive dewetting and hole nucleation. We introduce the use of novel “clock-drop” images to visualize droplet evolution and dimensionless height–radius plots to characterize the evaporative pathways. Combining these with a simple scaling argument, we show that receding speed is inversely proportional to the three-phase contact radius R, with a constant of proportionality A, which is dependent on the drying conditions and drop shape, but independent of drop volume. We have shown that this is equivalent to a linear decrease in contact area with time. By varying only A, which we achieved experimentally by choosing solutions whose precipitate constricts after deposition, the evaporation mode can be altered continuously to include the two established modes CCR and CCA, and two new modes which we term “slowly receding” and “rapidly receding”, which are characterised by fully dried “doughnut” and “pillar” deposits respectively.

Graphical abstract: Classifying dynamic contact line modes in drying drops

Supplementary files

Article information

Article type
Paper
Submitted
27 Nov 2014
Accepted
06 Jan 2015
First published
06 Jan 2015
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2015,11, 1628-1633

Author version available

Classifying dynamic contact line modes in drying drops

K. A. Baldwin and D. J. Fairhurst, Soft Matter, 2015, 11, 1628 DOI: 10.1039/C4SM02642J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements