Nonlinear rheology of entangled polymers at turning point
Abstract
Thanks to extensive observations of strain localization upon startup or after stepwise shear, a conceptual framework for nonlinear rheology of entangled polymers appears to have emerged that has led to discovery of many new phenomena, which were not previously predicted by the standard tube model. On the other hand, the published theoretical and experimental attempts to test the limits of the tube model have largely demonstrated that the most experimental data appear consistent with the tube-model based theoretical calculations. Therefore, the field of nonlinear rheology of entangled polymers is at a turning point and is thus a rather crucial area in which further examinations are needed. In particular, more molecular dynamics simulations are needed to delineate the detailed molecular mechanisms for the various nonlinear rheological phenomena.