Phase separation in ternary fluid mixtures: a molecular dynamics study
Abstract
We present detailed results from molecular dynamics (MD) simulations of phase separation in ternary (ABC) fluid mixtures for d = 2 and d = 3 systems. Our MD simulations naturally incorporate hydrodynamic effects. The domain growth law is (t) ∼ tϕ with dynamic growth exponent ϕ. Our data clearly indicate that a ternary fluid mixture reaches a dynamical scaling regime at late times with a gradual crossover from ϕ = 1/3 → 1/2 → 2/3 in d = 2 and ϕ = 1/3 → 1 in d = 3 resulting from the hydrodynamic effect in the system. These MD simulations do not yet access the inertial hydrodynamic regime (with (t) ∼ t2/3) of phase separation in ternary fluid mixtures in d = 3.