Issue 21, 2015

Correlation between cellulose thin film supramolecular structures and interactions with water

Abstract

Water interactions of ultra-thin films of wood-derived polysaccharides were investigated by using surface sensitive methods, Quartz Crystal Microbalance with Dissipation (QCM-D) and Atomic Force Microscopy (AFM). These approaches allow systematic molecular level detection and reveal information on the inherent behaviour of biobased materials with nanosensitivity. The influence of structural features of cellulose films i.e. crystallinity, surface roughness and porosity on water interactions was clarified. Cellulose films were prepared using spin-coating and Langmuir–Schaefer deposition to obtain thin films of equal thickness, identical cellulose origin, simultaneously with different supramolecular structures. The uptake/release of water molecules and swelling were characterized using QCM-D, and the structural features of the films were evaluated by AFM. More crystalline cellulose film possessed nanoporosity and as a consequence higher accessible surface area (more binding sites for water) and thus, it was capable of binding more water molecules in humid air and when immersed in water when compared to amorphous cellulose film. Due to the ordered structure, more crystalline cellulose film remained rigid and elastic although the water binding ability was more pronounced compared to amorphous film. The lower amount of bound water induced softening of the amorphous cellulose film and the elastic layer became viscoelastic at high humidity. Finally, cellulose thin films were modified by adsorbing a layer of 1-butyloxy-2-hydroxypropyl xylan, and the effect on moisture uptake was investigated. It was found that the supramolecular structure of the cellulose substrate has an effect not only on the adsorbed amount of xylan derivative but also on the water interactions of the material.

Graphical abstract: Correlation between cellulose thin film supramolecular structures and interactions with water

Article information

Article type
Paper
Submitted
12 Feb 2015
Accepted
01 Apr 2015
First published
09 Apr 2015

Soft Matter, 2015,11, 4273-4282

Author version available

Correlation between cellulose thin film supramolecular structures and interactions with water

T. Tammelin, R. Abburi, M. Gestranius, C. Laine, H. Setälä and M. Österberg, Soft Matter, 2015, 11, 4273 DOI: 10.1039/C5SM00374A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements