Reversible sol–gel transitions of aqueous dispersions of silica nanoparticles grafted with diblock copolymer brushes composed of a thermosensitive inner block and a charged outer block†
Abstract
We report in this article that aqueous dispersions of thermosensitive diblock copolymer brush-grafted 17 nm silica nanoparticles (hairy NPs) can undergo in situ, reversible sol–gel transitions in response to temperature changes. The brushes consisted of a thermosensitive poly(methoxydi(ethylene glycol) methacrylate) (PDEGMMA) inner block and a charge-carrying, poly(DEGMMA-co-2-(methacryloyloxy)ethyltrimethylammonium iodide) outer block, which were prepared by a one-pot, surface-initiated atom transfer radical polymerization and subsequent quaternization of tertiary amine moieties in the second block with iodomethane. Above a critical concentration, the aqueous dispersion of hairy NPs with an appropriate block copolymer composition exhibited a reversible transition from a free flowing liquid to a free standing hydrogel upon cooling from elevated temperatures, which was driven by the lower critical solution temperature transition of the thermosensitive inner block of hairy NPs as confirmed by dynamic light scattering study. At the same concentration of hairy NPs, the sol–gel transition temperature was higher when the highly hydrated, charged outer block was longer. The transition temperature decreased with decreasing the concentration of hairy NPs in the dispersion; reversible gelation was achieved with a concentration of hairy NPs in water as low as 5.5 wt%. Interestingly, the LCST transition of the inner thermosensitive PDEGMMA block disappeared and no sol–gel transition was observed in the studied temperature range when the charged outer block was sufficiently long.