Issue 40, 2015

Oxygen reduction reaction induced pH-responsive chemo-mechanical hydrogel actuators

Abstract

We describe and characterize elementary designs for electrochemical micro- and macro-scale chemomechanical hydrogel actuators. The actuation of a pH-sensitive cross-linked polyacrylic acid (PAA) hydrogel is driven in the model devices through the oxygen reduction reaction (ORR) occurring at the electrodes of an embedded Au mesh micro-electrochemical array. Proton consumption by the ORR at the cathode of the embedded electrochemical cell leads to the formation of a localized pH gradient that in turn drives the strain response in the composite actuators. The dynamics result from the ionization of the carboxylic acid moieties of the PAA network in the high pH region, yielding an osmotic pressure that drives a volumetric expansion due to water imbibition. This system actuates both stably and reversibly; when the electrochemically-induced ORR is halted, the localized pH gradient dissipates due to diffusive mixing, which in turn relaxes the induced strains. Two approaches to the fabrication of hydrogel actuators were examined in this work. The first method adopted a design based on small flagella (∼0.2 mm × 1.5 mm × 60 μm, width × length × height) in which the actuating PAA structures are molded atop a set of fixed electrodes mounted on a supporting substrate. These hydrogel actuators show fast, large-amplitude, and largely reversible responses in the ORR mediated chemomechanical dynamics. We also investigated larger hydrogel actuators (∼4.5 mm × 11 mm × 1 mm, width × length × height), based on an autonomous design that embeds an open mesh stretchable micro-electrode array within the hydrogel. The significant and design-dependent impacts of mass transfer on the chemomechanical dynamics are evidenced in each case, a feature examined to elucidate more efficient mesoscopic design rules for actuators of this form.

Graphical abstract: Oxygen reduction reaction induced pH-responsive chemo-mechanical hydrogel actuators

Supplementary files

Article information

Article type
Paper
Submitted
29 Jul 2015
Accepted
24 Aug 2015
First published
24 Aug 2015

Soft Matter, 2015,11, 7953-7959

Author version available

Oxygen reduction reaction induced pH-responsive chemo-mechanical hydrogel actuators

C. Yu, P. Yuan, E. M. Erickson, C. M. Daly, J. A. Rogers and R. G. Nuzzo, Soft Matter, 2015, 11, 7953 DOI: 10.1039/C5SM01892G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements