Issue 4, 2015

Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution

Abstract

Monodispersed nickel phosphide nanocrystals (NCs) with different phases (Ni12P5, Ni2P and Ni5P4) were synthesized via the thermal decomposition approach using nickel acetylacetonate as the nickel source, trioctylphosphine as the phosphorus source and oleylamine in 1-octadecene as the reductant. The phases of the as-synthesized nickel phosphide NCs could easily be controlled by changing the P : Ni precursor ratio. The structure and morphology of the as-synthesized nickel phosphide NCs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and N2 adsorption–desorption. A formation mechanism for the as-synthesized nickel phosphide NCs was proposed. We further studied the influence of the phase of the nickel phosphide NCs on the electrocatalytic properties for the hydrogen evolution reaction (HER). All phases showed good catalytic properties, and the Ni5P4 NCs with a solid structure exhibited higher catalytic activity than the Ni12P5 and Ni2P NCs. This superior catalytic activity is attributed to the higher positive charge of Ni and a stronger ensemble effect of P in Ni5P4 NCs. This study demonstrates that the crystalline phase is important for affecting the electrocatalytic properties.

Graphical abstract: Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution

Supplementary files

Article information

Article type
Paper
Submitted
16 Sep 2014
Accepted
03 Nov 2014
First published
04 Nov 2014

J. Mater. Chem. A, 2015,3, 1656-1665

Author version available

Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution

Y. Pan, Y. Liu, J. Zhao, K. Yang, J. Liang, D. Liu, W. Hu, D. Liu, Y. Liu and C. Liu, J. Mater. Chem. A, 2015, 3, 1656 DOI: 10.1039/C4TA04867A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements