Issue 1, 2015

Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries

Abstract

Sodium-ion batteries (SIBs) are expected to be a promising commercial alternative to lithium-ion batteries (LIBs) for large-scale and low-cost electrical energy storage applications in the near future. Despite this, the absence of a suitable negative electrode material hinders their development. In this contribution, we synthesized monodispersed hard carbon spherules (HCS) from an abundant biomass of sucrose, and investigated the influence of the carbonization temperature on the microstructure and electrochemical performance. The initial coulombic efficiency of the HCS was increased to 83% by coating its surface with soft carbon through the pyrolysis of toluene. Interestingly, the plateau capacity at the low potential region increased with increasing carbonization temperature. The HCS carbonized at 1600 °C showed the highest plateau capacity (220 mA h g−1) and excellent cycling performance with a capacity retention of 93% after 100 cycles. When coupled with an air-stable P2-Na2/3Ni1/3Mn2/3O2 positive electrode, the full cell exhibited a high initial coulombic efficiency of 76%, a mean operating voltage of 3.5 V and excellent cycling performance. The theoretical energy density of this system was estimated to be 200 W h kg−1. These promising properties are believed to be close to the level required for practical applications.

Graphical abstract: Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries

Supplementary files

Article information

Article type
Communication
Submitted
12 Oct 2014
Accepted
23 Oct 2014
First published
23 Oct 2014

J. Mater. Chem. A, 2015,3, 71-77

Author version available

Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries

Y. Li, S. Xu, X. Wu, J. Yu, Y. Wang, Y. Hu, H. Li, L. Chen and X. Huang, J. Mater. Chem. A, 2015, 3, 71 DOI: 10.1039/C4TA05451B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements