Issue 4, 2015

Conformal and highly adsorptive metal–organic framework thin films via layer-by-layer growth on ALD-coated fiber mats

Abstract

Integration of metal–organic frameworks (MOFs) on textiles shows promise for enabling facile deployment and expanding MOF applications. While MOFs deposited on flat substrates can show relatively smooth surface texture, most previous reports of MOFs integrated on fibers show poor conformality with many individual crystal domains. Here we report a new low-temperature (<70 °C) method to deposit uniform and smooth MOF thin films on fiber surfaces using an energy enhanced layer-by-layer (LbL) method with an ALD Al2O3 nucleation layer. Cross-sectional TEM images show a well-defined core@shell structure of the MOF-functionalized fiber, and SEM shows a flat MOF surface texture. We analyze the thickness and mass increase data of LbL HKUST-1 MOF thin films on ALD-coated polypropylene fibers and find the growth rate to be 288–290 ng cm−2 per LbL cycle. Unlike planar LbL MOF embodiments where adsorption capacities are difficult to quantify, the large volume quantity on a typical fiber mat enables accurate surface area measurement of these unique MOF morphologies. After 40 LbL cycles the MOFs on fibers exhibit N2 adsorption BET surface areas of up to 93.6 m2 gMOF+fiber−1 (∼535 m2 gMOF−1) and breakthrough test results reveal high dynamic loadings for NH3 (1.37 molNH3 kgMOF+fiber−1) and H2S (1.49 molH2S kgMOF+fiber−1). This synthesis route is applicable to many polymer fibers, and the fiber@ALD@MOF structure is promising for gas filtration, membrane separation, catalysis, chemical sensing and other applications.

Graphical abstract: Conformal and highly adsorptive metal–organic framework thin films via layer-by-layer growth on ALD-coated fiber mats

Supplementary files

Article information

Article type
Paper
Submitted
15 Oct 2014
Accepted
20 Nov 2014
First published
20 Nov 2014

J. Mater. Chem. A, 2015,3, 1458-1464

Author version available

Conformal and highly adsorptive metal–organic framework thin films via layer-by-layer growth on ALD-coated fiber mats

J. Zhao, B. Gong, W. T. Nunn, P. C. Lemaire, E. C. Stevens, F. I. Sidi, P. S. Williams, C. J. Oldham, H. J. Walls, S. D. Shepherd, M. A. Browe, G. W. Peterson, M. D. Losego and G. N. Parsons, J. Mater. Chem. A, 2015, 3, 1458 DOI: 10.1039/C4TA05501B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements