Tuning the charge transfer route by p–n junction catalysts embedded with CdS nanorods for simultaneous efficient hydrogen and oxygen evolution†
Abstract
Overall solar water splitting into H2 and O2 using visible light responsive photocatalyst has been considered as a clean, green, and renewable system. CdS with a suitable bandgap (2.25 eV) and band position was for a long time not considered as a promising candidate for overall solar water splitting because of its serious photo-corrosion and rapid charge recombination, although it has considerable photocatalytic activity for H2 generation in a sacrificial agent containing electrolyte. Here, we design a new sandwich-like architecture using CdS nanorods embedded in a p–n junction of MoS2/N-RGO which serves as a novel photocatalytic system that could promote overall water splitting in natural water. It was found that the p–n junction of MoS2/N-RGO not only works as the HER and OER electrocatalyst for H2 and O2 generation respectively, but also facilitates charge separation by its inner electric field. Compared to well-defined thermodynamically favored charge transport, the new charge transfer route in MoS2/CdS/N-RGO splits natural water, resulting in an essential change of the carrier separation mechanism and high anti-corrosion.