High-performance lithium/sulfur batteries by decorating CMK-3/S cathodes with DNA†
Abstract
Prohibiting lithium polysulfides from being dissolved to electrolyte is the most critical challenge for pursuing high-performance Li/S batteries. Taking full advantage of interactions between polysulfides and functional groups of third-party additives has been proven to be an efficient strategy. In the present work, we selected DNA to decorate CMK-3/S cathodes. The –PO and N– sites of the constituent deoxyribonucleotides of DNA are demonstrated to be capable of anchoring polysulfides through our DFT calculations. The experimental results show that adding a small amount of DNA into the CMK-3/S composite significantly improved the cyclic performance. In particular, with a moderate DNA loading rate, the DNA post-loading procedure resulted in a discharge capacity of 771 mA h g−1 at 0.1 C after 200 cycles (70.7% retention of the initial), which yielded slightly improved performance as compared to the DNA pre-loading procedure. The proposed DNA decorating scheme may provide an applicable technical solution for developing high-performance Li/S batteries.
- This article is part of the themed collection: 2015 Journal of Materials Chemistry A Hot Papers