Issue 11, 2015

Tungsten-based porous thin-films for electrocatalytic hydrogen generation

Abstract

Developing inexpensive and efficient electrocatalysts without using precious metals for the hydrogen evolution reaction (HER) is essential for the realization of economical clean energy production. Here we demonstrate a facile approach to access interconnected three-dimensional (3-D) porous tungsten-based (WS2 and WC) thin-films without using any templates. Benefiting from the 3-D open frameworks of these highly porous thin-films, there are enormous amounts of exposed active sites and efficient mass transport in favor of the HER. Both electrodes exhibit excellent catalytic activity towards HER with onset overpotentials of ∼100 mV for WS2 and ∼120 mV for WC, and similar Tafel slopes of ∼67 mV per decade. The long-term operation of these thin-film electrodes is confirmed by their electrochemical stability test. With the low loading mass (∼80 and ∼160 μg cm−2 for WS2 and WC, respectively), these porous thin-films are among the best tungsten-based HER electrocatalysts.

Graphical abstract: Tungsten-based porous thin-films for electrocatalytic hydrogen generation

Supplementary files

Article information

Article type
Communication
Submitted
16 Dec 2014
Accepted
09 Feb 2015
First published
09 Feb 2015

J. Mater. Chem. A, 2015,3, 5798-5804

Tungsten-based porous thin-films for electrocatalytic hydrogen generation

H. Fei, Y. Yang, X. Fan, G. Wang, G. Ruan and J. M. Tour, J. Mater. Chem. A, 2015, 3, 5798 DOI: 10.1039/C4TA06938B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements