Photoinduced triplet-state electron transfer of platinum porphyrin: a one-step direct method for sensing iodide with an unprecedented detection limit†
Abstract
Here, we report for the first time a one-step direct method for sensing halides in aqueous solution using phosphorescence quenching of platinum-cationic porphyrin. This method offers an easy, rapid, environmentally friendly, ultra-sensitive (with a previously unattained detection limit of 1 × 10−12 M) and economical method for the determination of iodide. To fully understand the reaction mechanism responsible for the phosphorescence quenching process, we have employed cutting-edge time-resolved laser spectroscopy with broadband capabilities.