Controlled functionalization of carbon nanotubes as superhydrophobic material for adjustable oil/water separation†
Abstract
A robust strategy for fabricating superhydrophobic carbon nanotube (CNT)-based hybrid materials as a separation membrane through the covalent attachment of the fluorine-bearing organosilane 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTS) onto –OH functionalized CNTs is proposed. This method resulted in PFDTS/CNT superhydrophobic materials with controlled functionalization that could be used to effectively separate various surfactant-stabilized water-in-oil emulsions with high separation efficiency and high flux. It maintains stable superhydrophobicity and high separation efficiency under extreme conditions, including high or low temperature and strongly acidic or alkaline solutions, and shows fire-retardant properties.